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Abstract. We investigate entanglement between electrons in serially coupled double quantum dots attached
to noninteracting leads. In addition to local repulsion we consider the influence of capacitive inter-dot
interaction. We show how the competition between extended Kondo and local singlet phases determines
the ground state and thereby the entanglement. The results are additionally discussed in connection with
the linear conductance through the system.

PACS. 73.63.Kv Quantum dots – 03.67.Mn Entanglement production, characterization, and manipulation
– 72.15.Qm Scattering mechanisms and Kondo effect

1 Introduction

In early days of quantum mechanics the question of entan-
glement between particles was considered a paradox. To-
day it has become appreciated that the ability to establish
entanglement between qubits in a controlled manner is a
crucial ingredient of any quantum information processing
system. The interest in such systems is spurred on also by
the fact that if a quantum computer were built, it would
be capable of tasks impracticable in classical computing [1]
as are, e.g., factoring and searching algorithms [2].

In general, it is desirable that the quantum comput-
ing hardware meets several criteria as originally proposed
by DiVincenzo [3] and include (i) well defined qubits with
the feasibility to scale up in number; (ii) the possibility
to initialize and manipulate qubit states; (iii) decoherence
processes should be minimal that quantum error correc-
tion techniques can be applied; and (iv) ability of detect-
ing final qubit states as the outcome of quantum com-
putation. It seems that these criteria for scalable qubits
can be met in structures consisting of coupled quantum
dots [4,5] which are therefore considered for implementa-
tion of quantum computing processes in solid state.

In particular, recent experiments on semiconductor
double quantum dot (DQD) devices have shown the evi-
dence of spin entangled states in GaAs based heterostuc-
tures [6]. It was shown that vertical-lateral double quan-
tum dots may be useful for implementing two-electron
spin entanglement [7] and it was demonstrated that co-
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herent manipulation and projective readout is possible in
double quantum dot systems [8]. The ability to precisely
control the number of electrons by surface gates was also
reported [9].

One of the central issues regarding two-qubit opera-
tions as the basis for quantum computing algorithms is
the creation and the control of qubit pair entanglement in
a computing device [1]. The interaction of qubit pairs with
their environment is in general a complicated many-body
process and its understanding is crucial for experimental
solid state realization of qubits in single and double quan-
tum dots [5].

Specifically, the Kondo effect was found to play an im-
portant role in single [10] and double quantum dot [11–13]
systems and here we report how the Kondo interac-
tion diminishes the entanglement between qubits defined
in DQDs even when other sources of decoherence (e.g.
phonons) are absent.

The paper is organized as follows. Section 2 introduces
the model for coupled qubit pairs – two coupled quantum
dots. In Section 3 the entanglement measure relevant for
this system is presented. Firstly, spin entanglement for
the regime when each of the dots is singly occupied and
with weak inter-dot repulsion, and secondly, charge en-
tanglement for the regime, where due to possible strong
inter-dot repulsion empty and doubly occupied sites rep-
resent dominant contributions to the ground state. The
main analysis of the model relies on a numerical approach
and is presented in Section 4. Results are summarized in
Section 5.
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Fig. 1. Schematic picture of serial DQD coupled to leads.

2 Coupled quantum dots with interaction

One of the simplest examples of solid state qubit realiza-
tions is a pair of serially coupled DQDs: a device with the
ability to produce entangled pairs that may be extracted
using a single-electron turnstile [14]. We model such a
DQD using the two-impurity Anderson Hamiltonian

H =
∑

i=A,B

(εni + Uni↑ni↓) + V nAnB

−t
∑

s

(c†AscBs + h.c.), (1)

where c†is creates an electron with spin s in the dot i = A
or i = B and nis = c†iscis is the number operator. The
on-site energies ε and the Hubbard repulsion U are taken
equal for both dots. The dots are coupled to the left and
right noninteracting tight-binding leads with the chemical
potential set to the middle of the band of width 4t0. Each
of the dots is coupled to the adjacent lead by hopping t′
and the corresponding hybridization width is Γ = (t′)2/t0.
Schematically this setup is presented in Figure 1. The dots
are additionally coupled capacitively by a inter-dot repul-
sion term V nAnB.

In this paper we concentrate on the low temper-
ature properties of DQD system determined from the
ground state. We expand the ground state in the
Schönhammer and Gunnarsson projection-operator ba-
sis [15,16] |Ψλλ′ij〉 = P(λi)P(λ′j)

∣∣0̃
〉
, which consists

of projectors Pλi where i ∈ {A, B},– e.g., P(0i) =
(1 − ni↑) (1 − ni↓), P(1i) =

∑
σ niσ (1 − niσ̄), P(2i) =

ni↑ni↓ – and additional operators involving the operators
in leads. We used up to ∼100 additional combinations of
operators consisting of, for example, P(3ji) = P(0i)v̂jP(1i),
where v̂ij denotes the tunneling to/from dot i to the site
j in the lead. These operators are applied to the state∣∣0̃

〉
, which is the ground state of the auxiliary noninter-

acting DQD Hamiltonian of the same form as H , but with
U, V = 0, renormalized parameters ε, t, t′ → ε̃, t̃, t̃′ and ad-
ditional parameter t̃′′ which corresponds to hopping from
left dot to right lead and vice versa which although ab-
sent in the original Hamiltonian is present in the effective
Hamiltonian in some parameter regimes.

The starting point towards the understanding of the
ground state of DQDs are the filling properties of isolated
DQDs. The first electron is added when ε = t, and the
second when ε = −t+J−[(U +V )−|U−V |]/2, where J =
[−|U−V |+√

(U − V )2 + 16t2]/2 is the difference between
singlet and triplet energies. For ε + U/2 + V = 0 DQD is
doubly occupied, n = 〈nA + nB〉 = 2, and the ground

state is 1√
2
[α(|↑↓〉 − |↓↑〉) + β(|20〉 − |02〉)], where α/β =

4t/(V −U+
√

(U − V )2 + 16t2). Here we use notation |↑↓〉
corresponding to spin-up and spin-down states on sites A
and B, and |20〉 to double and zero occupancy of sites
A, B. The range of ε where single occupation is favorable
is progressively diminished when V �= U . For large t or
at (and near) V = U the molecular bonding and anti-
bonding orbitals are formed as is seen here from α ∼ β.

When DQDs are attached to the leads the low tem-
perature physics is to the large extent the same as that of
the two-impurity Kondo problem studied by Jones, Varma
and Wilkins two decades ago [17,18]. There two impurities
form either two Kondo singlets with delocalized electrons
or bind into a local spin-singlet state which is virtually de-
coupled from delocalized electrons. The crossover between
the regimes is determined by the relative values of the ex-
change magnetic energy J and twice the Kondo condensa-
tion energy, of order the Kondo temperature given by the
Haldane formula, TK =

√
UΓ/2 exp(|ε||ε+U |/2ΓU). Such

results were obtained by the analysis of a two-impurity
Anderson model by means of slave-boson formalism [19–
23], numerical renormalization group [24–26] or present
formalism [26,27]. Resembling behavior was found also in
particular regimes of triple quantum dot systems [28], and
DQDs in side coupled [29] and parallel [30] configurations.
As a side note we remark that the slave boson saddle-
point approximation is equivalent to the Schönhammer-
Gunnarsson method applied with the minimal set of op-
erators [31], which for the present case of stronger cou-
pling would not give converged results. The advantage
of the present formalism over the numerical renormal-
ization group approach is mainly dimminished numerical
effort in the regimes of small and moderate interaction
strengths which are considered here. Additionaly, in the
present approach the interpretion of the results and the
calculation of various local correlation functions can be
more direct, because the ground state wave function is
explicitely available.

3 Entanglement

3.1 Spin entanglement

Quantum entanglement as a physical resource was first
defined for two distinguishable particles in a pure state
through von Neumann entropy and concurrence [32–35].
However, amongst the realistic systems of major physi-
cal interest, electron-qubits have the potential for a much
richer variety of entanglement measure choices due to both
their charge and spin degrees of freedom. In systems of
identical particles, for example, generalizations are needed
to define an appropriate entanglement measure which ad-
equately deals with multiple occupancy states [36–39].

When entanglement is quantified in fermionic sys-
tems the measure must also account for the effect of ex-
change [40] as well as of mutual electron repulsion. In
lattice fermion models entanglement is sensitive to the
interplay between charge hopping and the avoidance of
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double occupancy due to the Hubbard repulsion, which
results in an effective Heisenberg interaction between ad-
jacent spins [41]. Entangled fermionic qubits can be cre-
ated with electron-hole pairs in a Fermi sea [42] and in
the scattering of two distinguishable particles [43]. A spin-
independent scheme for detecting orbital entanglement
of two-quasiparticle excitations of a mesoscopic normal-
superconductor system was also proposed recently [44].

For two distinguishable particles A and B, described
with single spin- 1

2 (or pseudo spin) states s =↑ or ↓ and
in a pure state |ΨAB〉 =

∑
ss′ αss′ |s〉A|s′〉B concurrence as

a measure of entanglement is given by [33]

C0 = 2|α↑↑α↓↓ − α↑↓α↓↑|. (2)

Two qubits are completely entangled, C0 = 1, if they
are in one of the Bell states [32], e.g., singlet |ΨAB〉 ∝
| ↑↓〉 − | ↓↑〉.

A qubit pair represented by two electrons in DQDs
and in the contact with the leads acting as a fermionic
bath can not be described by a pure state and entangle-
ment can not be related to the concurrence given with the
Wootters formula equation (2) relevant for pure states. In
the case of mixed states describing qubit pairs concurrence
is related to the reduced density matrix of the DQD sub-
system [35,45,46], where for systems that are axially sym-
metric in spin space the concurrence may conveniently be
given in the closed form [47],

C0 = max(0, C↑↓, C‖),

C↑↓ = 2|〈S+
AS−

B 〉| − 2
√
〈P ↑

AP ↑
B〉〈P ↓

AP ↓
B〉, (3)

C‖ = 2|〈S+
AS+

B 〉| − 2
√
〈P ↑

AP ↓
B〉〈P ↓

AP ↑
B〉,

where S+
i = (S−

i )† = c†i↑ci↓ is the electron spin raising
operator for dot i = A or B and P s

i = nis(1 − ni,−s) is
the projection operator onto the subspace where dot i is
occupied by one electron with spin s.

In the derivation of concurrence formula equation (3)
the reduced density matrix was obtained by projecting
onto four local spin states of | ↑ 〉A, | ↓ 〉A, | ↑ 〉B, and
| ↓ 〉B, corresponding to singly occupied DQD sites A and
B, respectively. If t/U is not small the electrons tunnel
between the dots and charge fluctuations introduce ad-
ditional states with zero or double occupancy of individ-
ual dots [36,41]. As pointed out by Zanardi [41] in the
case of simple Hubbard dimer the entanglement is not re-
lated only to spin but also to charge degrees of freedom
which emerge when repulsion between electrons is weak
or moderate.

For systems with strong electron-electron repulsion,
charge fluctuations are suppressed and the states with sin-
gle occupancy – the spin-qubits – dominate: the concept
of spin-entanglement quantified with concurrence can still
be applied. We use spin-projected density matrix and con-
sider only entanglement corresponding to spin degrees of
freedom. Due to doubly (or zero) occupied states arising
from charge fluctuation on the dots (caused by tunneling
between the dots A and B or due to the exchange with

the electrons in the leads), the reduced density matrix
has to be renormalized. The probability that at the mea-
surement of entanglement there is precisely one electron
on each of the dots is less than unity, P11 < 1, and the
spin-concurrence is then given with

C = C0/P11, (4)

where P11 = P↑↓ + P‖, and P↑↓ = 〈P ↑
AP ↓

B + P ↓
AP ↑

B〉,
P‖ = 〈P ↑

AP ↑
B +P ↓

AP ↓
B〉 are probabilities for antiparallel and

parallel spin alignment, respectively. Such procedure cor-
responds to the measurement apparatus which would only
discern spins and ignore all cases whenever no electron, or
a electron pair would appear at one of the detectors at
sites A or B.

3.2 Charge (isospin) entanglement

At half-filling in the ground state of two isolated impu-
rities coupled by a capacitive (but not tunneling) term
V = U , 4 ‘spin states’ |σ1σ2〉 and 2 ‘charge states’ |20〉,
|02〉 are degenerate. By introducing the pseudospin opera-
tor [48] T̃ i = 1/2

∑
ll′=A,B

∑
σ c†lστ i

ll′cl′σ, where τ i are the
Pauli matrices, and the combined spin-pseudospin opera-
tors W ij = SiT̃ j, the Hamiltonian is evidently SU(4) sym-
metric. As long as the SU(4) symmetry breaking terms are
small enough (e.g., tunneling t → 0) the ground state of
such DQDs attached to the leads remains close to an SU(4)
symmetric state with ‘spin’ screened by the electrons in
the leads [27]. The same symmetry group due to additional
orbital degree of freedom occurs also in single impurity
(quantum dot) formed in carbon nanotubes [50,51].

If V >> U charge states dominate and in this case
charge concurrence can be defined in a direct analogy
with the previous spin case. In equation (3) one just has
to replace the spin operators with their corresponding
isospin counterparts, e.g., S−

λ = c†λ↓cλ↑ = (S+
λ )† → T−

λ =
cλ↑cλ↓ = (T +

λ )† for sites λ =A,B and Sz
λ = (nλ↑ − nλ↓)/2

→ T z
λ = (nλ − 1)/2. If the probability for spin states is

significant, appropriate renormalization to charge states is
analogous to equation (4), but with corresponding isospin
operators. The density matrix is here renormalized with
the probability P20 that precisely nA,B = 2 and nB,A = 0
electrons occupy individual dots (corresponding to appa-
ratus which only measures occurrence or absence of pairs
at each of its detectors).

4 Numerical results

4.1 Concurrence

We here present the results for zero temperature (ground
state) concurrence of a qubit pair in DQDs in the ab-
sence of magnetic field. Temperature dependence of con-
currence for the case of V = 0 is given in reference [26].
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Fig. 2. (a) Spin-spin correlation for V/U = 0, 1/3, 2/3, 1 (full
lines) and V/U = 5/4 (dotted) for U/Γ = 12, Γ/t0 = 0.1.
(b) Probabilities for parallel (lower curves - dashed) and anti-
parallel (upper curves - full) spins of electrons in the DQD for
V/U ratios as in (a). Note that the probability for parallel spins
for V/U = 5/4 is almost zero (dashed-dotted), while P↑↓ < 1/2
for J/TK < 1000 (dotted); the probabilities do not sum to 1.
The deficiency (which goes to zero as U → ∞) is due to states
with double particle (or hole) occupancy on at least one dot.

Expectation values 〈...〉 in the concurrence formula equa-
tion (3) are now calculated using the ground state there-
fore 〈S+

AS+
B 〉 = 0 and C‖ < 0. We consider the particle-

hole symmetry point with n = 2 and ε + U/2 + V = 0.
Qualitatively, the concurrence is significant whenever

enhanced spin-spin correlations indicate inter-dot singlet
formation. As shown in Figure 2a for U/Γ = 12 and
Γ/t0 = 0.1, the correlation function 〈SASB〉 tends to −3/4
for J large enough to suppress the formation of Kondo
singlets, but still J/U 
 1, that local charge fluctua-
tions are sufficiently suppressed. In particular, the local
dot-dot singlet is formed whenever singlet-triplet splitting
superexchange energy J > Jc ∼ 2TK . With increasing
V → U , and above U , the probability for singly occu-
pied spin states, P11 = P↑↓ + P‖ is significantly reduced,
Figures 2b and 3, which also leads to reduced spin-spin
corelation, Figure 2a. In this limit the concept involving
isospin entanglement can be applied (not shown here).

Concurrence, corresponding to the correlation function
from Figures 2a, 2b is presented in Figure 3 for various
values of V . As discussed above, in the V = 0 case C is
zero for J below ∼2TK due to the Kondo effect, which
leads to entanglement between localized and conducting
electrons [52] instead of the A-B qubit pair entanglement.
On the other hand, for V ∼ U the concurrence rises only
at J ∼ 10TK because the Kondo temperature rises near
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Fig. 3. Concurrence (full curves) and single particular dot
occupation probability P11 (dashed) for V/U = 0, 1/3, 2/3, 1.
For V/U = 5/4 the concurrence and P11 are plotted dotted and
dashed-dotted, respectively. Parameters are as in Figure 2.

the point of SU(4) symmetry due to the increased degen-
eracy (note that in our notation TK corresponds to the
ordinary SU(2) Kondo regime and is not a function of V ).
In finite magnetic field irrespectively of temperature the
concurrence abruptly tends to zero for B > J (not shown
here) [53].

The entanglement between qubits quantified by con-
currence is small in the regime where the Kondo effect
determines the ground state (left side of Fig. 3). The
Kondo screening transfers the entanglement between lo-
calized electrons to the mutual entanglement of localized
and the conducting electrons [52]. For V ∼ U the Kondo
temperature is enhanced and the corresponding Kondo
ground state is competitive towards the localized singlet
state. For V > U + TK the Kondo screening is inhib-
ited [49] and the concurrence is increased (Fig. 3, dotted).
However, the probability for singly occupied states (Fig. 3,
dashed-dotted) is small. In this regime the charge-charge
entanglement is large for all J as there is no competing
ground state – no Kondo effect occurs here and the isospin
entanglement is this regime would be similar to that of the
isolated dimer (not shown here).

4.2 Conductance

One of the most directly measurable properties of DQDs
is the linear conductance. We calculate the zero temper-
ature conductance using the sine formula (SF) [54–56],
G = G0 sin2[(E+ −E−)/4t0L], where G0 = 2e2/h and E±
are the ground state energies of a large auxiliary ring con-
sisting of L non-interacting sites and an embedded DQD,
with periodic and anti-periodic boundary conditions, re-
spectively. Alternatively conductance can be obtained also
from the Green’s function (GF) corresponding to the effec-
tive noninteracting Hamiltonian H̃ with effective parame-
ters [54,57]. The advantage of the former method is better
convergence in the strong coupling regime, however, the
accuracy of the SF method depends only on the accuracy
of the ground-state energy and is therefore in some cases
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Fig. 4. Conductance of DQD as a function of gate voltage and inter-dot tunneling rate for U/Γ = 20, Γ/t0 = 0.04. Pictograms
indicate dominant ground state regimes: molecular orbital Kondo effect, local spin-singlet formation and two separate Kondo
effects.
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more robust. By comparing results of both methods we
checked for the consistency and the convergence.

The conductance as a function of interdot hoping t
and ε + U/2 in the absence of interdot repulsion, V = 0,
is presented in Figure 4. The Hubbard repulsion is set
to U/Γ = 20 and hybridization to Γ/t0 = 0.04. As in
the previous Section three different regimes of t corre-
spondingly reflect in the results for conductance. For large
t/Γ > 1 (but with Γ/U 
 1) the DQD is in molecular-
orbital Kondo regime when occupancy is odd, i.e, n ∼ 1, 3.
Typical Kondo conductance plateau of width ∼ U/2 is de-
veloped around bonding (and anti-bonding) molecular or-
bital level ±t. These two unitary conductance regions with
reducing t become progressively sharper when we enter
t/U 
 1 regime. There the description of DQD in terms of
bonding/anti-bonding orbitals should be replaced with lo-
cal picture. Due to strong electron-electron repulsion local
charge fluctuations are suppressed at the point of particle-
hole symmetry with n = 2 and ε + U/2 = 0. Thick full
line corresponds to points of G = G0 and there exists some

critical tc where two conductance peaks merge (bullet) and
for t < tc conductance is less then G0 (dashed line). The
corresponding critical superexchange interaction is of the
order of Kondo temperature as before, Jc ∼ 2TK . As dis-
cussed above, in this regime each of the dots undergoes
the Kondo effect where local moment is screened by con-
ducting electrons in the adjacent lead and left – right sides
of the system become decoupled which leads to vanishing
A→B conductance as G ∝ (t/Γ )2 [19].

5 Summary

The main results concerning entanglement of qubit pairs
in serially coupled double quantum dots are extracted in
Figure 5. The charge fluctuations ∆n2

A = 〈n2
A〉 − 〈nA〉2,

contour plot in Figure 5a, are suppressed for sufficiently
large repulsion, e.g., U/Γ > 10. In this limit and in
vanishing magnetic field, the DQD can be described in
terms of the Werner states [58] and becomes similar to
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recently studied problem of entanglement of two Kondo
spin impurities embedded in a conduction band [59]. In
this case, C↑↓ ∼ 2(−〈SASB〉− 1

4 ) ∼ P↑↓−2P|| for C↑↓ ≥ 0.
For large U/Γ , where the charge fluctuations vanish, the
〈SASB〉 = − 1

4 line (dashed line) progressively merges with
the C = 0 boundary line (full).

In Figure 5b phase diagram with fixed U/Γ = 12
and corresponding to Figure 5a presents V/U dependence
of C = 0 boundary line (full) in comparison with the
〈SASB〉 = − 1

4 line (dashed). With V exceeding U the
probability for well defined spin-qubit pairs in DQD, P11,
rapidly decreases which means that states with doubly oc-
cupied or empty individual dots dominate. In this regime
C = 0 line is pushed to much lower J/TK . For V > U
the probability P11 becomes progressively negligible giv-
ing more meaning to considering charge (isospin) entan-
glement instead. It should be noted, however, that in re-
alistic DQD systems intersite repulsion V is in general
weaker compared to U and that this regime would not
be easily reached experimentally. One possibility, where
V -interaction could dominate, are systems with strong lo-
cal electron-phonon interactions which may significantly
renormalize local U [60] without affecting capacitive in-
teraction V .

To conclude, we have found generic behavior of spin-
entanglement of an electron pair in serially coupled double
quantum dots. On the one hand, we have shown quanti-
tatively that making the spin-spin exchange coupling J
large by increasing tunneling t, leads to enhanced charge
fluctuations, whilst on the other, at small magnetic inter-
actions J < Jc entanglement is suppressed as the DQD
system undergoes the Kondo effect. Various regimes are
explained and supported with typical numerical examples.
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